



# Thermal Devices and Systems For Enhanced Energy Efficiency

Ravi Prasher, Ph.D. Program Director, ARPA-E

09/12/2011

# **US Energy Diagram**



# Residential and Commercial Buildings Consume 40 Quads of Primary Energy Per Year

Buildings use 72% of the U.S. electricity and 55% of the its natural gas

Heating & cooling is ~50% of energy consumption



By 2030, Business as usual:

16% growth in electricity demand and additional 200 GW of electricity (\$25-50 Billion/yr)





# **Energy Supply Systems**

# **Current System Architecture**



Rate of Fuel Use,  $F = F_E + F_H$ 













## **BEET-IT Target**

#### Building cooling is responsible for ~5% of US energy consumption and CO<sub>2</sub> emissions



Reduce primary energy consumption by ~ 40 - 50%





# Two types of Air Conditioners/Heat Pumps





- It can run with any kind of heat source: Waste, Solar, Geothermal
- Very bulky and inefficient





## **Portfolio of Technologies Funded**

BEETIT: \$30.3 M, 3 years, 16 projects







# High-Efficiency, on-Line Membrane Air Dehumidifier Enabling Sensible Cooling for Warm and Humid Climates

#### **ADMA Products Inc.**



- Selective absorption of water vapor molecules
- Weight one-two orders of magnitude lower
- Can potentially beat FOA target by ~50%



# Modular Thermal Hub for Building Cooling, Heating, and Water Heating: Thermal heat pump

#### **Georgia Technology Research Corporation**

#### Microscale Monolithic Absorption Heat Pump







300 W System

#### SHIM A Components





# **Eventual Miniaturization Potential**

# State of the Art:

9-12 ft<sup>3</sup>/RT 150-210 lb/RT



# **Projected Commercial Units:**

- $\sim 4 \text{ ft}^3/\text{RT}$
- ~ 60 lb/RT
- ~ 2-3x smaller







# High-Efficiency Adsorption Chilling Using Novel Metal Organic Heat Carriers: Thermal heat pump

#### **Pacific Northwest National Lab**



#### **Technology Impact**

- Replace silica gel with MOHC sorbents
- Enable operation with more refrigerants
- 2 4x reduction in system weight and size



# **Metal-organic Heat Carriers**

- Crystalline solids or gels formed with self-assembled structural building units
- Continuous porous network with tunable binding energy for gases and liquids
- Synthesis conditions support thin film deposition, nanophase crystals, or bulk powders
- Applications in geothermal power, waste heat recovery, cooling and refrigeration







#### Non-Equilibrium Asymmetric Thermoelectrics (NEAT): Solid State Cooler Sheetak

- Novel electrodes to reduce interface losses.
- Non-equilibrium effects decouple electron and phonon systems
- Atomically-thin phonon-blocking (PB), electron tunneling junctions
- 2 3x reduction in cost
- 2 3x increase in performance







## **Applications of Thermal Storage**



**Solar**: Convert solar power into base load power using storage



**Nuclear**: Heat storage for peak power



**Grid-level electricity storage**: Hightemperature thermal storage + subsequent conversion by engines





# **Applications of Thermal Storage**

#### Thermochemical production of fuel from sunlight using heat





Energy in chemical bonds

William C. Chueh, et al. Science **330**, 1797 (2010)



# **Applications of Thermal Storage**



PHEV/EV: Thermal battery for thermal management and cabin conditioning



Storing and redeploying heat or cold to match building loads

#### Industrial waste heat capture and storage





Refrigerated trucks and LNG Transport







#### **HEATS Focus Areas**

#### Synergy between Solar and High-Temp Nuclear





Efficiency > 50%



**Grid level storage using heat pumps** 



Thermochemical Fuel Production from Sunlight

**Conversion efficiency > 10%** 

Scale







Increase EV range by ~ 40%

<100 °C

>600 °C

**Temperature** 







# **High-Temperature Applications: CSP**





# Storage Cost (\$/kWh<sub>t</sub>) SOA 80-120 Target 15

#### SOA:

- 3 fluids: Oil, Molten salt, Steam
- Molten salt
- Sensible storage
- $\Delta T = 100 \, ^{\circ}C (290 390 \, ^{\circ}C)$





# **Thermochemical Production of Fuel (Thermofuel)**



#### Direct thermolysis of water = 4000 °C

- Theoretical efficiency can be greater than 30%
- Best demonstrated ~ 1 %
- Temperature > 1500 °C

|        | efficiency |
|--------|------------|
| SOA    | ~1%        |
| Target | >10%       |

Significant potential of heat recycling and harvesting





## Low temperature: Effect of Climate Control on PHEV and EV

- Best example of combined heat and power: heating of cabin of IC engine vehicle (heating is free)
- Fully electrified light duty fleet will require > 1 Quad for heating

Power consumption in EV ~ 6 KW @ 40 miles/hr and 13 KW @ 60 miles/hr

(Source: Tesla)

| Mode | Peak<br>load (kW) | Steady<br>state<br>load (kW) |
|------|-------------------|------------------------------|
| A/C  | 3.9               | 2.1                          |
| Heat | 6.0               | 2.0                          |

Barnitt et al., NREL, 2010

Heating and cooling can reduce the range of EVs by 5 -40%



